GH2038高温合金1、高温合金母合金系列 2、抗腐蚀高温合金板、棒、丝、带、管及锻件 3、高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件 4、耐玻璃腐蚀系列产品 5、环境耐蚀、硬表面耐磨高温合金系列 6、特种精密铸造零件(叶片、增压涡轮、涡轮转子、导向器、仪表接头) 7、玻棉生产用离心器、高温轴及辅件8、钢坯加热炉用钴基合金耐热垫块和滑轨 9、阀门座圈 10、铸造“U”形电阻带 11、离心铸管系列 12、纳米材料系列产品 13、轻比重高温结构材料 14、功能材料(膨胀合金、高温高弹性合金、恒弹性合金系列) 15、生物医学材料系列产品 16、电子工程用靶材系列产品 17、动力装置喷嘴系列产品 18、司太立合金耐磨片 19、超高温抗氧化腐蚀炉辊、辐射管。 4提高强度 固溶强化 加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。 沉淀强化 通过时效处理,从过饱和固溶体中析出第二相(γ’、γ"、碳化物等),以强化合金。γ‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显着的强化作用。γ’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ‘相为Ni3(Al,Ti)。γ’相的强化效应可通过以下途径得到加强: ①增加γ‘相的数量; ②使γ’相与基体有适宜的错配度,以获得共格畸变的强化效应; ③加入铌、钽等元素增大γ’相的反相畴界能,以提高其抵抗位错切割的能 高温合金 力; ④加入钴、钨、钼等元素提高γ‘相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化